Android
Life Cycle

CS328
Dick Steflik

Life Cycle

* The steps that an application goes through
from starting to finishing

* Slightly different than normal Java life cycle
due to:

— the difference in the way Android application are
defined

— the limited resources of the Android hardware
platform

Android Applications

* Applications are defined to Android via the
android manifest file, located in the root of the
Eclipse project definition (AndroidManifest.xml)

* Double clicking on the AndroidManifest.xml file in
the Eclipse project will open the Manifest editor.

* The manifest editor is the normal way of creating
and modifying the manifest file (defining the app
to the system)

Android Applications

* An Android application is a collection of
activities, an activity correlates to a screen or
form that is presented to the user.

 The HelloAndroid is a simple one screen app
that is essentially the same as a Java app run
in a terminal/command window. Its
AndroidManisest.xml file reflects this :

AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>
<manifest xmins:android="http://schemas.android.com/apk/res/android"
package="com.example.helloandroid"
android:versionCode="1"
android:versionName="1.0">
<application android:icon="@drawable/icon" android:label="@string/app_name">
<activity android:name=".HelloAndroid"
android:label="@string/app_name">
<intent-filter>
<action android:name="android.intent.action. MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>
</manifest>

<manifest>

 The manifest tag has the following attributes:

— xmlins ; the name of the namespace (android) and
where the DTD for the xml parser is located

— package ; the name of the java package for this
application (must have at least two levels)

— android:version ; the version code for this version
of the app

— android:versionName ; The version name (for
publishing)

<activity>

e child tag of <manifest>

* need one <activity> tag for each activity of the
application

e attributes:

— android:name; the name of the activity, this will
be used as the name of the Java file and the
resulting class

— android:label; a string that we will be able to
programatically retrieve the activity name at run
time.

<intent-filter>

Child tag of <activity>

First, what’s an intent? In OO-speak an intent is a message
sent from one program to another (message dispatcher)
to tell the system what to do next. Typically an intent
consists of two parts; an action and the data that that
action is supposed to use to do it.

When you select an icon on the main page the intent is to
run the app associated with that icon

The tag is used to construct an
android.content.IntentFilter object to handle a particular
android.content.Intent

<action>

e child of <intent-filter>

 the action we want done:

— Predefined actions of the intent class of

android.content ; see the api at:
http://developer.android.com/reference/android/content/Intent.html

http://developer.android.com/reference/android/content/Intent.html

<category>

child of <intent-filter>
additional attributes that can be supplied

LAUNCHER — indicates that it should apper in
the launcher as a top level application

see the api documentation for more on intent
resolution.

Intents

e Commonly used Google application intents
http://d.android.com/guide/appendix/g-app-intents.html

* Registry of 3" party application Intents

http://www.openintents.org/en/intentstable

http://d.android.com/guide/appendix/g-app-intents.html
http://www.openintents.org/en/intentstable

Whew!

 we've explained the HelloAndroid manifest
file, on to Life Cycle and Life cycle
management.

Life Cycle

Each application runs in its own process.
Each activity of an app is run in the apps process

Processes are started and stopped as needed to
run an apps components.

Processes may be killed to reclaim needed
resources.

Killed apps may be restored to their last state
when requested by the user

Management

* Most management of the life cycle is done
automatically by the system via the activity stack.

* The activity class has the following method

callbacks to help you manage the app:

— onCreate()

— onStart()

— onResume()

— onPause()

— onStop()

— onRestart()

— onDestroy()

User navigates
back lo the
activity

| Other appiications
need memory

onCreate()

—
()

onStart() onRestart()
W
A
onResume() 5
The activity
comes to the
foreground
| Another activity comes
in front of the activity
The activity |
comes to the
onPause() foreground
| The activity is no longer visible |
onStop()
T—
A4
onDestroy()

using the callbacks

* To use a callback just overload it in your activity
java file.

* The lifecycle is explained very well here:
http://developer.android.com/videos/index.html#v=fL6gSd4ugSI

* The use of the callbacks is explained in the api documentation for
the activity class:
http://developer.android.com/reference/android/app/Activity.html

http://developer.android.com/videos/index.html#v=fL6gSd4ugSI
http://developer.android.com/reference/android/app/Activity.html

