
Android
Life Cycle

CS328

Dick Steflik

Life Cycle

• The steps that an application goes through
from starting to finishing

• Slightly different than normal Java life cycle
due to :

– the difference in the way Android application are
defined

– the limited resources of the Android hardware
platform

Android Applications

• Applications are defined to Android via the
android manifest file, located in the root of the
Eclipse project definition (AndroidManifest.xml)

• Double clicking on the AndroidManifest.xml file in
the Eclipse project will open the Manifest editor.

• The manifest editor is the normal way of creating
and modifying the manifest file (defining the app
to the system)

Android Applications

• An Android application is a collection of
activities, an activity correlates to a screen or
form that is presented to the user.

• The HelloAndroid is a simple one screen app
that is essentially the same as a Java app run
in a terminal/command window. Its
AndroidManisest.xml file reflects this :

AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.example.helloandroid"
android:versionCode="1"
android:versionName="1.0">

<application android:icon="@drawable/icon" android:label="@string/app_name">
<activity android:name=".HelloAndroid"

android:label="@string/app_name">
<intent-filter>

<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>
</activity>

</application>
</manifest>

<manifest>

• The manifest tag has the following attributes:

– xmlns ; the name of the namespace (android) and
where the DTD for the xml parser is located

– package ; the name of the java package for this
application (must have at least two levels)

– android:version ; the version code for this version
of the app

– android:versionName ; The version name (for
publishing)

<activity>

• child tag of <manifest>

• need one <activity> tag for each activity of the
application

• attributes:
– android:name; the name of the activity, this will

be used as the name of the Java file and the
resulting class

– android:label; a string that we will be able to
programatically retrieve the activity name at run
time.

<intent-filter>

• Child tag of <activity>

• First, what’s an intent? In OO-speak an intent is a message
sent from one program to another (message dispatcher)
to tell the system what to do next. Typically an intent
consists of two parts; an action and the data that that
action is supposed to use to do it.

• When you select an icon on the main page the intent is to
run the app associated with that icon

• The tag is used to construct an
android.content.IntentFilter object to handle a particular
android.content.Intent

<action>

• child of <intent-filter>

• the action we want done:

– Predefined actions of the intent class of
android.content ; see the api at:
http://developer.android.com/reference/android/content/Intent.html

http://developer.android.com/reference/android/content/Intent.html

<category>

• child of <intent-filter>

• additional attributes that can be supplied

• LAUNCHER – indicates that it should apper in
the launcher as a top level application

• see the api documentation for more on intent
resolution.

Intents

• Commonly used Google application intents
http://d.android.com/guide/appendix/g-app-intents.html

• Registry of 3rd party application Intents
http://www.openintents.org/en/intentstable

http://d.android.com/guide/appendix/g-app-intents.html
http://www.openintents.org/en/intentstable

Whew!

• we’ve explained the HelloAndroid manifest
file, on to Life Cycle and Life cycle
management.

Life Cycle

• Each application runs in its own process.

• Each activity of an app is run in the apps process

• Processes are started and stopped as needed to
run an apps components.

• Processes may be killed to reclaim needed
resources.

• Killed apps may be restored to their last state
when requested by the user

Management

• Most management of the life cycle is done
automatically by the system via the activity stack.

• The activity class has the following method
callbacks to help you manage the app:
– onCreate()
– onStart()
– onResume()
– onPause()
– onStop()
– onRestart()
– onDestroy()

using the callbacks

• To use a callback just overload it in your activity
java file.

• The lifecycle is explained very well here:
http://developer.android.com/videos/index.html#v=fL6gSd4ugSI

• The use of the callbacks is explained in the api documentation for
the activity class:
http://developer.android.com/reference/android/app/Activity.html

http://developer.android.com/videos/index.html#v=fL6gSd4ugSI
http://developer.android.com/reference/android/app/Activity.html

